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Abstract. Seismocardiogram (SCG) recording is a novel method for the pro-
longed monitoring of the cardiac mechanical performance during spontaneous
behavior. The continuous monitoring results in a collection of thousands of
beats recorded during a variety of physical activities so that the automatic
analysis and processing of such data is a challenging task due to the presence of
artefactual beats and morphological changes over time that currently request the
human expertise. On this premise, we propose the use of the Evolving Fuzzy
Neural Network (EFuNN) paradigm for the automatic artifact detection in the
SCG signal. The fuzzy logic processing method can be applied to model the
human expertise knowledge using the learning capabilities of an artificial neural
network. The evolving capability of the EFuNN paradigm has been applied to
solve the issue of the physiological variability of the SGC waveform. Prelimi-
nary tests have been carried out to validate this approach and the obtained results
demonstrate the effectiveness of the method and its scalability.
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1 Introduction

The assessment of both the electrical and mechanical activity of the heart are essential
for the full evaluation of the cardiac performance. It is worth noting that while the
electrical activity of the heart is easily quantified by the electrocardiogram, the move-
ment of the cardiac muscle (cardiac mechanics) is commonly checked by ultrasound
techniques; this implies that the measure is often taken while the subject is at rest and in
a clinical laboratory. This approach, although clinically efficient, leaves virtually out the
possibility to explore the mechanical heart performance outside the laboratory setting.

A significant step forward with respect to such a traditional context may derive
from the measure of the seismocardiogram (SCG). SCG is the quantification of the
small thorax vibrations produced by the beating heart and by the blood ejection from
the ventricles into the vascular tree. This signal may be simply detected by placing a
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miniaturized accelerometer on the thorax of the subject [1]. For each heart beat, the
SCG profile is characterized by a number of peaks and valleys. From the simultaneous
assessment of SCG and ultrasound images, it was shown that each of these SCG
displacements actually reflects a specific mechanical event of the heart cycle, including
the opening and closure of the aortic and mitral valves [2], as illustrated Fig. 1. From
the analysis of the SCG signal, when detected by wearable sensors, we may derive
information on the mechanical performance of the heart even during the 24 h under the
real challenges of the daily life [3].

However, SCG is a low-amplitude signal, with a variability in the order of few mg
(where 1 g is the terrestrial gravity acceleration, equal to 9.8 m/s2). If we consider that
the accelerations produced by the daily physical activity are in the order of 0.1–1 g,
namely 10–100 times stronger, movement artifacts may be expected, and are actually
present, in the SCG recordings carried out during the daily spontaneous behavior. As a
consequence, the first action in the processing of SCG profiles, must be the identifi-
cation and removal of artifacts. In case of short-term recordings this task is commonly
achieved by a visual scrutiny of the signal, but when long term recordings should be
handled, an automatic analysis is needed (Fig. 2).

At this moment no established procedure is available for the artifact rejection in the
SCG signal and till now each research laboratory working in this area, included our lab,
has its own deterministic rule-based algorithm for the artifact identification. However,
this approach is not completely effective because the SCG morphology may vary from
subject to subject, and changes may also occur over time in the same subject as a function

AS= Atrial Systole, MC= Mitral valve Closure, AO= Aortic valve 
Opening, MA= Maximal blood Acceleration, RE= Rapid Ejection, 
AC= Aortic valve Closure, MO= Mitral valve Opening, RF= Rapid 
ventricular Filling (according to nomenclature proposed by Crow et 
al. [2]). Redrawn from [4] by permission.

Fig. 1. Typical SCG waveform and its fiducial points associated with cardiac mechanical events
(lower panel) as compared with the ECG complex (upper panel).
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of the respiratory phase, body position and heart rate. This means that it is difficult, if not
impossible, to identify static deterministic rules which apply for all subjects and over long
term recordings. The net result of this situation is that a tailoring of the algorithms is
currently required when passing from the analysis of one subject to the other.

On this premise, the use of evolving machine learning techniques is expected to
provide a significantly help in handling the SCG artifact identification. In addition, the
same technique is deemed appropriate also for the subsequent phases of the SCG
analysis, namely for the recognition of the specific fiducial points in the SCG profile
associated to the opening and closure of the cardiac valves. So, our group decided to
activate a long term project aimed to investigate the applicability of different paradigms
of neural networks in all the steps of the SCG treatment. This paper refers to the very
first step of the project, namely to the evaluation of the Evolving Fuzzy Neural Net-
work (EFuNN) applicability in the artfact identification in SCG recordings.

It should be mentioned that we previously observed that artifactual distortions of
the SCG signal may also be detected by the analysis of the SCG envelope, i.e. a derived
signal containing much less details of the raw SCG signal. In this study the EFuNN
analysis was carried out by considering both raw data and the envelope curve.

2 Data Set Preparation

One healthy volunteer (age: 38 years), was recruited for the data collection. In this
subject a simultaneous ECG and SCG continuous recording was made during sleep by
using a custom textile-based system, MagIC-SCG, developed in our laboratories.
Briefly, this device is composed of a sensorized vest and an electronic unit (see Fig. 3).
The vest is made of cotton and incorporates textile sensors for the ECG and respiratory
detection. The electronic unit includes a tri-axial accelerometer and is positioned inside
a pocket of the vest so to be in mechanical contact with the sternum and detect the SCG
vibrations. All data, sampled at 200 Hz, were locally stored on a memory card. Details
on the system may be found in [3]. As mentioned in the introduction, the artifact

Fig. 2. Example of an artifactual beat and a good-quality SCG beat
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identification was carried out by considering both raw data and the envelope of the
SCG signal (see Fig. 4). The envelope curve was obtained by estimating the
sample-by-sample absolute value of the SCG signal and then by filtering the output
with a 31-sample FIR filter with triangular window.

For this study, we selected a segment of 100 beats from the sleep recording and
extracted the raw signal and the envelope data within this window to create the data
sets to train and test the EFuNN.

3 The EFuNN Paradigm

The EFuNN [11] paradigm, as an implementation of the evolving [5–7] connectionist
system (ECOS) paradigm [8], enables on-line adaptation and evolves in real-time. The
evolving capability is incremental and adaptive making more effective the learning.
EFuNN [9–12] is a connectionist paradigm based on fuzzy rules and a fuzzy inference
engine.

Fig. 3. Left panel: the MagIC-SCG garment with orientation of the accelerometric axes: x
(longitudinal: foot-head), y (lateral: left-right), z (sagittal, back-front). Right panel: the electronic
board, to be located into the vest pocket at the sternum level. Redrawn from [3] by permission.

Fig. 4. SCG profile and the corresponding envelope curve
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EFuNN is a five layer architecture. Each layer deploys the full layers of the fuzzy
logic framework. The first layer is the input layer. The second layer executes the
fuzzification of the input data. The third layer runs the rules applied to the fuzzified
inputs producing the fuzzy output. The fourth layer executes the defuzzification of the
output data applying a weighted function and a saturated linear activation function. The
fifth layer is the final output of the network.

The five layers fuzzy architecture corresponds to a five layers Artificial Neural
Network (ANN) architecture so that the ANN’s learning capabilities can be applied to
set up the fuzzy logic engine’s knowledge as nodes of the ANN. Such nodes evolve by
learnig. As the rules are nodes of the ANN, after the training the ANN’s nodes are
feature’s models of the input data.

EFuNN paradigm fuses both the fuzzy logic’s advantages to infer by rules and the
ANN’s capability to learn by data, so the most challenging task of the fuzzy logic (the
knowledge set up) is accomplished by a bio-inspired method to compile inferring rules
and fuzzy representation of real (physical) world data.

4 Data Set and Training

As mentioned in Sect. 2, two data segments have been used to create the test and train
data set, one from the envelope curve, and from the raw SCG signal. Each beat in the
data segment was classified by an expert as good or artifactual. For each beat, two array
constituted by the first 151 samples of the signal and its envelope were created.

In total, the data sets to train and test the EFuNN consisted of 100 signal arrays, 100
envelope arrays and the corresponding labels.

As to the analysis, first we trained the EFuNN with the envelope dataset. Figure 5
shows the sequence of the “good” (“1”) and “artefactual” (“0”) beats of the envelope
dataset. Then we trained the EFuNN with the SGC raw data.

Fig. 5. EfuNN is a five layers artificial neural network where each layer corresponds to a layer
of a fuzzy logic engine.
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5 System Test and Validation

The training and the tests of the EFuNN have been executed in the simulation and
modeling environment NeuCom [13] applying the following setup:

Sensitivity threshold: 0.9
Error threshold: 01
Number of membership functions: 3
Learning rate for W1: 0.1
Learning rate for W2: 0.1
Pruning: on
Node age: 60
Aggregation: on

The trained EFuNN has been tested with a new dataset to validate the EFuNN
capability to recognize and classify each SCG beat period according to the expert
knowledge.

The test results show that effective learning can be gained by the EFuNN at
training-time. Some mismatches occurred on both envelope and row data (Figs. 6 and
7) after a single learning step. However, errors completely recovered after that some
evolving training step was applied to the trained EFuNN (Figs. 8, 9 and 10).

Fig. 6. Sequence of the “good” (“1”) and “artefactual” (“0”) beats of the envelope dataset.
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Fig. 7. Test of the EFuNN after a single learning step (envelope).

Fig. 8. Test of the EFuNN after a single learning step (raw SCG).
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6 Results Evaluation and Future Developments

The first round of tests indicates that the use of EFuNN might solve the issue of the
automatic rejection of the artefactual beats in continuous seismocardiogram recordings.
This approach appears effective when evolving methods are applied. The EFuNN

Fig. 9. Test of the EFuNN after one evolving step (envelope).

Fig. 10. Test of the EFuNN after one evolving step (raw SCG).
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paradigm is effective due to its optimal matching of the fuzzy modeling with the
knowledge, and because of the correct artificial neural network inference and con-
nectionist capabilities.

Interestingly, the trained EFuNN correctly detect artifacts also in the raw SCG
signal, which is much more complex and detailed than the envelope curve.

Future developments will include investigations on how this methodology performs
when applied on longer recordings and if an EFuNN trained on data from one subject is
effective to test data from a different subject.
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