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Abstract—Speech is dynamic in nature and organized in a 
complex time-and-frequency structure that makes it very hard to 
solve the issue of automatic speech recognition (ASR) for diverse 
speaker conditions.   The hardcomputing approach to solving this 
issue (i.e conventional computing based on precisely-stated, 
analytical, mathematics-inspired models) pushed processing limits 
because it is highly computationally time-consuming and intolerant 
of imprecision, uncertainty or approximation in the data. 
Softcomputing and its biomorphic implementation is a more 
natural approach to solving the issue of speaker-independent ASR, 
given its ability to manage imprecision,  uncertainty, and 
approximation,  as well as to reduce system complexity to fit the 
upcoming requirements of next-generation deeply-embedded 
systems.  This paper reports experiments based on an evolving-
fuzzy-neural-network (EFuNN) paradigm trained to process and 
classify phonemes to drive multimodal (audiovisual) speech-to-text 
transcription and speaker identification 

Keywords— Phonemes; ASR; hardcomputing; softcomputing; 
audiovisual speech recognition. 

I. INTRODUCTION  

Recent advances in microelectronics and neuromorphic 

engineering [1][12] (e.g. spiking neural networks [2]) have laid 

the technological and methodological groundwork  for a new 

approach to system development, mainly in the area of human 

machine interaction (HMI). Biomorphic modeling of Certain 

challenges such as automatic speech recognition finds in 

bioinspiration new ideas to solve complex issues [3]. 

Automatic speech recognition (ASR) and Speaker Identification 

(SI) are challenging tasks, mainly because of  complex the time 

and frequency structure of speech.  Hardcomputing, i.e. 

conventional computing, approaches this issue with precisely-

stated, analytical models that require a lot of computing time and 

are overly sensitive to imprecision, uncertainty, and 

approximation.  Biological systems, such as human beings, do 

not apply hardcomputing methods to efficiently process speech 

signals.  Our auditory system implements time-frequency 

processing of the speech signal with biological organs, such as 

the cochlea.  The speech (air-pressure wave) is first transformed 

into an analog fluid-pressure wave with the same time structure 

and features.  It is then transformed into a sequence of spatially 

distributed frequencies. [4]. This biological process is the same as 

computing a Fourier-transform algorithm, in that it maps the 

wave’s time information onto the corresponding frequency 

information.  To accomplish this, the biological system does not 

carry out mathematical computations on precise measurements in 

a hardcomputing fashion.  Rather, it executes fuzzy 

measurements on imprecise information, performing the task of 

audio-frequency sensing very effectively with minimal energy 

consumption (its power dissipation is only about 14µW), less 

complexity (a few cubic millimeters) [5]and fewer errors than 

does an equivalent hardcomputing system like the audio front 

end of an automatic speech-recognition system.  The cochlea is 

an example of such optimal  biological solution to the problem of 

feature extraction from time-domain information to the frequency 

domain that acts as an audio-processing front end for the cerebral 

cortex’s phoneme-recognition function at the stage dedicated to 

fusing related information such as visemes, gestures, context, etc.  

The auditory system is fully softcomputing-based, from the 

acoustic wave to the symbol (a symbolic description of the 

phoneme).  In earlier work we deployed a multimodal, bio-

inspired [6], audiovisual ASR (AVASR) framework intended as 

a reference design of a complete softcomputing-based AVASR, 

for which a zero-instruction-set-computing (ZISC) 

implementation could be feasible.  The multistage framework 

extends from the acoustic wave (the microphone) to symbolic 

transcription (the grapheme).  The first stage, phoneme 

identification, was fully hardcomputing-based, and did not meet 

the requirements of a complete ZISC architecture. 

The purpose of this investigation is to validate a 

softcomputing implementation of the first stage the AVASR 
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framework implements as hardcomputing [6], so as to 

accomplish the goal of full ZISC implementation. 

The AVASR softcomputing framework was not fully 

validated in [6] because the first stage, the audio and visual 

classifiers, was not implemented through softcomputing but 

through hardcomputing.  The main issue to investigate is how to 

feed the appropriate softcomputing paradigm with data directly 

from the sensor (microphone) demanding all needed signal 

conditioning only of analog circuitry, so that bio-inspired speech-

processing modeling could be employed. 

The following experiments aim to investigate the best 

softcomputing paradigm and setup to replace the hardcomputing 

stage in the AVASR framework [6], and other similar 

frameworks.  

II. EFUNN FOR PHONEME-BASED ISOLATED WORD RECOGNITION 

Our chosen softcomputing paradigm of reference is the 

evolving fuzzy neural network (EFuNN)[7], given its capacity to 

learn by evolving and adapting through evolution.  The first step 

consisted in checking the EFuNN’s ability to learn frequency-

domain features directly from time-domain data.  Sampled data 

was extracted from the audio wave of an uttered word and 

labeled according to its phoneme content.  This data was used to 

train the EFuNN.  The trained EFuNN was then tested for its 

ability to match and recognize the right phoneme sequence in the 

uttered word.  

 

A. Evolving Fuzzy Neural Network for Knowledge-based 
Learning 
This fuzzy neural network (EFuNN) is the implementation of 

the evolving-connectionist-system (ECOS) [8] paradigm, which 

enables on-line adaptation and evolution over time.  The 

EFuNN’s ability to evolve is incremental, because it adapts to 

new data, increasing the effectiveness of its learning ability.  

More important, the EFuNN can learn spatiotemporal data 

adaptively, in a single pass per learning session [9].  

The EFuNN [10] is a connectionist structure, based on fuzzy 

rules and inference implemented in a five-layer architecture. 

Connections are created and fixed as labeled input data is 

presented at the input layer. 

The EFuNN architecture has five layers (Fig. 1), the first 

being the input layer.  The second layer implements a fuzzy 

quantification of the input data, according to fuzzy measurement 

criteria (“small,” “medium” or “large”).  The third layer 

represents the rules through network nodes.  Such nodes evolve 

by supervised or unsupervised learning.  The rules are feature 

models of the input data, so this layer functions as a feature 

extractor to classify input data into the appropriate domain.  

 

Fig. 1. EFuNN is a softcomputing paradigm that have the ability to evolve  

incrementally,  because it adapts to new data.  

The fourth layer takes care of defuzzifying the output data 

(the inverse operation of the fuzzification at the input layer).  The 

method applied for defuzzification consists of a weighted 

function and a saturated, linear-activation function that produce 

the appropriate output (prediction). 

B. Training and testing the data set 
The data set devised to train the EFuNN to learn to recognize 

single isolated words by matching their phonemes consists of a 

set of sampled and labeled phonemes derived from the phonetic 

transcription of the word hello (Fig. 3) and the word fly (Fig. 4).  

For training purposes, the phone set is (artificially) machine 

synthesized (fig. 2 )and for test purposes the speech is recorded, 

naturally produced utterance (Fig. 3, 4). 

 

Fig. 2. Word hello generated by a formant synthesizer 
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Fig. 3. Word hello uttered by a haman being. 

 

Fig. 4. Word  fly  uttered by a human being.. 

 

Fig. 5. Recognition of the synthesized word hello after training and one evolving 

step. 

 

Fig. 6. Recognition of the synthesized word hello after training and few evolving 

steps. 
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Fig. 7. – Recognition of the word fly after the training, without evolving steps 

 

Fig. 8. Recognition of the synthesized word hello after several  evolving steps. 

 

Fig. 9. Recognition of the word fly after 3 evolving steps. 

 

Fig. 10. RecognitIon of the word fly after several evolving steps. 

 

The NeuCom [11] environment was used to model and simulate the EFuNN by 

applying the following setup: 

 
• Sensitivity threshold: 0.95 

• Error threshold: 0.05 

• Number of membership functions: 5 

• Learning rate for W1: 0.1 

• Learning rate for W2: 0.1 

• Node age: 60. 
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The phonemes are synthetically generated by a formant 

speech synthesizer.  The word hello for testing purposes was 

uttered by a human being. 

After the first training step and one evolving step, the EFuNN 

was barely able to recognize the correct phoneme sequence 

(Fig. 5).  But, after few more evolving steps , it proved quite able 

to recognize and classify the phonemes in the word hello (fig.6).  
The root mean square error dropped to very low values (from 

19.89 to 0.52 RMSE).  No phoneme mismatch occurs at the 

recognition stage .(Fig. 6). The same goes for the word fly (Fig. 

7, 9, 10). 

     

C. Modeling Improvements 
 

After isolated word recognition, the EFuNN was successfully 

tested for its ability to match any phone.  A complete set of 

English phones, with a few German and French ones as well (64 

distinct phones in all), was sampled and labeled to train the 

EFuNN. 

To mimic the cochlea’s strategy of dedicated neurodetectors,  

one neurodetector per frequency (a hair  cell), we trained one 

EFuNN for each phoneme (Fig. 7).  This reduced EFuNN 

complexity (minimizing the number of rules, on the order of tens) 

and improved test results.  This strategy led to a system of 64 

parallel EFuNNs, each specialized in recognizing a single phone 

in a time-domain-sampled sequence (fig.11). 

 

Fig. 11. Architecture of the parallel running dedicated EFuNNs , individually 

trained to match a single phone of an uttrered word. 

 

Fig. 11. Matching the phone /E/ and  the two pseudoophonemes /PA/ preceeding 

and following the coda (attack and decay) of the uttered word hello with one of 

the parallel running EFuNNs, the one trained for /E/. 

 

Upon testing, the following performance was achieved (Fig. 8) 

for the word hello: each phone in the uttered word hello was 

successfully predicted by the specific EFuNN trained for that 

phone.  Similar performance was achieved for the word fly (fig. 

10). 

III. OBSERVATIONS ON RESULTS OF EXPERIMENT 

The results of experiments confirm that the biomorphic 

approach to solving the ASR challenge is applicable to a 

complete softcomputing (ZISC) implementation of an ASR and, 

even in the above referred multimodal, audiovisual, framework 

[6].  Careful attention was paid to developing the data set, since 

the performance of softcomputing paradigms is largely 

dependent on the learning process.  This research demonstrated 

that learning from time-domain-sampled signals is feasible if a 

powerful softcomputing paradigm such as EFuNN is applied. 

This mean that the hardcomputing stage in an AVASR 

framework can be completely replaced by a softcomputing stage 

to make its implementation as ZISC feasible.  

A. Phonems and phones 

For these experiments we applied a set of 64 distinct 

synthesizable phones that can be combined to reproduce the 

phonemes needed for the language.  Recognition of many 

phonemes involves multiple items from the phone list.  While 

this obviously applies in the case of diphthongs, which often 

include phones appearing as glides, it is less obvious for a few 

articulatory features that make up part of the phone set.  These 

include the /PA/ mentioned above, a time segment with no 

3096



vibration, and various forms of closure or aspiration.  Closures 

are distinguished among glottal stops, fricative closure, and 

other vocal-tract closure.  In addition to the /h/ aspiration that is 

phonemic in the hat-at distinction and allophonic in English 

syllable-initial stops, distinct nasal and vocal-tract aspirations 

were identified as specific phones. 
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